The following is a proposition based on infinite series based on Ramanujan’s  Series Of:
1+2+3+4+5+6+7+………..= -1/12                          _(i)
But I am getting It wrong somewhere . could anyone please me find out my mistake ?
Here it goes ::
S=12+22+32+42+52+62+……………………. Upto infinity
S=1+4+9+16+25+36+49+64+81+100+……………
S=1+(2+2)+(3+6)+(4+12)+(5+20)+(6+30)+(7+42)+(8+56)+(9+72)+(10+90)+………….
S=(1+2+3+4+5+………..) + (2+6+12+20+30+42+……)
From (i)
S=-1/12+2x(1+3+6+10+15+21+………………)
S+1/12=2x(1+3+6+10+15+21+………..)                               _(ii)
S+1/12=2x(1+(2+1)+(3+3)+(4+6)+(5+10)+……..)  
S+1/12=2x{(1+2+3+4………..)   + (1+3+6+10+15+…….)}
S+1/12=2x (1+3+6+10+15+…….)+(-1/6)
From (ii)
S+1/12=S+1/12+(-1/6)
-1=6
So Can anyone point it where I am wrong ??


Comments

Popular Posts